Using Rasch Measurement Theory in the Development of a Quality of Life Instrument for Dementia Carers

Mike Horton¹, Molly Megson¹, Paul Kind¹, Jan Oyebode², Linda Claire³, Hareth Al-Janabi⁴, Carol Brayne⁵, Alan Tennant⁶, Zoe Hoare⁷, Penny Wright¹

¹ = University of Leeds, 2 = University of Bradford, 3 = University of Exeter
⁴ = University of Birmingham, 5 = University of Cambridge, 6 = Swiss Paraplegic Research, 7 = Bangor University
Background

- The number of people living in the United Kingdom (UK) with dementia is rising.

- People with dementia, society, and health/social care agencies are reliant upon informal carers, such as friends and family, to provide care and support.

- In 2015 the number of UK primary informal carers for people with dementia was estimated at more than 670,000.
Background

- **Without informal carers**, people with dementia would be dependent upon health and social care services and government costs would be increased greatly.
Background

- Having a caring role can have a large impact on:
 - Well-being
 - Quality of life
 - Finances

- It is therefore important that the quality of life of carers is **accurately measured** so that appropriate support can be provided at the right time
Background

- The instruments that are currently used for this purpose have been questioned in terms of their:
 - Focus
 - Length
 - Reliability
 - Sensitivity
DECIDE Study Aim

To develop a new instrument to measure the quality of life of people caring for someone living with dementia

- Psychometrically sound
- Short enough to be used in research and routine supportive care practice
- Economic evaluation??
Approach

- Needs-led model of quality of life
- Focuses on the satisfaction of individual needs in order to improve quality of life
- Conceptually unidimensional
Item development
Item development

- Semi-structured carer interviews carried out in order to generate statements relating to their quality of life
 - 42 carers
 - Purposively diverse sample

- This resulted in an initial item set of 70 dichotomous (agree/disagree) items
Data collection

- Questionnaire contained:
 - DECIDE 70-item pool
 - EQ-5D 3L
 - Short Warwick-Edinburgh Mental Well-Being Scale (SWEMWBS)
 - Socio-demographic questions
Data collection

- Completed by community-dwelling carers of someone with dementia (n=570)

 - 22 locations across England and Wales

 - Across a range of services and settings
Rasch Measurement Theory

Purpose:

• To test validity of total score
• To reveal anomalies in measurement structure

Offers **unified framework** to investigate:

• Misfit Patterns
• Dependency
• Targeting
• Differential Item Functioning (DIF)
Initial analysis

- All data was read into **RUMM2030** for item analysis, with the intention of removing anomalies and reducing the item set down to a bank of items that represent a single useable construct.
Initial analysis

- Do the 70-items form a useable unidimensional construct?
 - In short... No

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Item Fit Residual</th>
<th>Mean</th>
<th>SD</th>
<th>Person Fit Residual</th>
<th>Mean</th>
<th>SD</th>
<th>Overall Chi-Square Interaction</th>
<th>Value</th>
<th>df</th>
<th>p</th>
<th>PSI</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 70</td>
<td></td>
<td>-0.16</td>
<td>2.64</td>
<td></td>
<td>-0.15</td>
<td>0.92</td>
<td></td>
<td>1229.8</td>
<td>560</td>
<td><0.0001</td>
<td>0.92</td>
<td>0.92</td>
</tr>
</tbody>
</table>

- Unidimensionality T-test series = 29.2%
 (Lower CI: 27.4%)
Initial analysis

- Do the 70-items form a useable unidimensional construct?

- In short… No

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Item Fit Residual Mean</th>
<th>Item Fit Residual SD</th>
<th>Person Fit Residual Mean</th>
<th>Person Fit Residual SD</th>
<th>Overall Chi-Square Value</th>
<th>df</th>
<th>p</th>
<th>PSI</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 70</td>
<td>-0.16</td>
<td>2.64</td>
<td>-0.15</td>
<td>0.92</td>
<td>1229.8</td>
<td>560</td>
<td><0.0001</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>target values</td>
<td>0</td>
<td><1.4</td>
<td>0</td>
<td><1.4</td>
<td>non-significant</td>
<td></td>
<td></td>
<td>>0.7</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

- Unidimensionality T-test series = 29.2%
 (Lower CI: 27.4%)
What next?
EFA

- A preliminary exploratory factor analysis (EFA) was carried out to inform on potential domain structures

- Carried out using Mplus software, under a tetrachoric correlation matrix

- This identified 4 potential factors
 - RMSEA = 0.021
 - CFI = 0.966
 - TLI = 0.962
EFA

- Separated into four domains which aligned with four understandable concepts:

1. Issues affecting the carer themselves
2. Issues affecting the person being cared for
3. Support and information
4. Emotional interaction between carer and person being cared for
Focus on main factor

- All items loading onto the first factor were considered as candidate items to take forward into the secondary Rasch analysis

- Select all items that load at 0.3 or higher on the first factor

- Cross-loading items included

- Resulted in reduced item set of 37 items
First factor

- Do the 37-items form a useable unidimensional construct?
- In short… **Not really**

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Item Fit Residual Mean</th>
<th>SD</th>
<th>Person Fit Residual Mean</th>
<th>SD</th>
<th>Overall Chi-Square Value</th>
<th>df</th>
<th>p</th>
<th>PSI</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 70</td>
<td>-0.40</td>
<td>2.13</td>
<td>-0.17</td>
<td>0.92</td>
<td>558.8</td>
<td>296</td>
<td><0.0001</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>target values</td>
<td>0</td>
<td><1.4</td>
<td>0</td>
<td><1.4</td>
<td>non-significant</td>
<td></td>
<td></td>
<td>>0.7</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

- Unidimensionality T-test series = **12.0%**
 (Lower CI: 10.2%)
First factor

- Do the 37-items form a useable unidimensional construct?
 - In short... **Not really**

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Item Fit Residual Mean</th>
<th>SD</th>
<th>Person Fit Residual Mean</th>
<th>SD</th>
<th>Overall Chi-Square Value</th>
<th>df</th>
<th>p</th>
<th>PSI</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 70</td>
<td>-0.40</td>
<td>2.13</td>
<td>-0.17</td>
<td>0.92</td>
<td>558.8</td>
<td>296</td>
<td><0.0001</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>target values</td>
<td>0</td>
<td><1.4</td>
<td>0</td>
<td><1.4</td>
<td>non-significant</td>
<td></td>
<td></td>
<td>>0.7</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

- Unidimensionality T-test series = **12.0%**
 (Lower CI: **10.2%**)
Range of issues to address, but…
Rasch analysis item-fit criteria

- Individual item misfit anomalies
 - Non-significant at Bonferroni-adjusted chi-square p-value Standardised Fit-Residuals within ±2.5

- Response dependency
 - Q3 criterion cut point = 0.2 above average residual correlation

- DIF assessment by
 - Age
 - Gender
 - Carer relationship to person being cared for (spouse/non-spouse)
Individual Item Issues

- Under-discrimination

![Graph showing expected value and person location](image-url)
Individual Item Issues

- Over-discrimination
Individual Item Issues

- DIF (by carer relationship)
Individual Item Issues

- **Response Dependency**
- **Example of pairwise item dependency:**

 - “I have to overcome a lot ‘red tape’ when sorting things out for the person I care for”
 - “I spend a lot of time trying to sort out services”
 - “I ignore my own health needs”
 - “I don’t take very good care of myself”
Items iteratively removed (n=19)

<table>
<thead>
<tr>
<th>n items removed</th>
<th>Misfit</th>
<th>Dependency</th>
<th>DIF</th>
<th>Practical Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final Item Set

- Does the final (18) item set form a usable unidimensional construct?
 - In short… **Yes!**

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Item Fit Residual Mean</th>
<th>SD</th>
<th>Person Fit Residual Mean</th>
<th>SD</th>
<th>Overall Chi-Square Interaction Value</th>
<th>df</th>
<th>p</th>
<th>PSI</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final 18</td>
<td>-0.32</td>
<td>1.13</td>
<td>-0.20</td>
<td>0.72</td>
<td>184.1</td>
<td>162</td>
<td>0.113</td>
<td>0.81</td>
<td>0.83</td>
</tr>
<tr>
<td>target values</td>
<td>0</td>
<td><1.4</td>
<td>0</td>
<td><1.4</td>
<td>non-significant</td>
<td></td>
<td></td>
<td>>0.7</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

- Unidimensionality T-test series = **4.0%**
 (Lower CI: 2.2%)
Final Item Set

- Does the final (18) item set form a useable unidimensional construct?
 - In short... Yes!

- Unidimensionality T-test series = **4.0%**
 (Lower CI: 2.2%)
Targeting

Distribution of Carer Quality of Life

Floor:
N = 16/565 = 2.83%

Ceiling:
N = 2/565 = 0.35%

Spearman Correlations:
SWEMWBS = -0.58
EQ-5D VAS = -0.36
Additionally…

- Each of the items that had been removed was individually added back into the final item set, in order to test for whether the source of misfit (and reason for removal) remained.

- The original source of misfit remained for all of the 19 removed items.
Final Item Set

Scale Properties:
- Derived directly from carers ✓
- Valid ✓
- Reliable ✓
- Unidimensional ✓
- Free from DIF ✓
- Free from local dependency ✓
- Well-targeted to population ✓
- Raw-score is sufficient statistic ✓
- Interval transformation ✓
Issues

- Question direction
- Confounded factors?
- Practical issues Vs psychometric value
Still to do…

- Test-retest reliability
- Sensitivity to change
- Evaluation of economic utility (DECIDE Workstream 2)
- Assessment of further (remaining 3) domains
Conclusion

Aim: To develop a new instrument to measure the quality of life of people caring for someone living with dementia

• Psychometrically sound
• Short enough to be used in research and routine supportive care practice
• Economic evaluation??
Conclusion
Information

• This work was supported by the Medical Research Council (MRC) and the National Institute for Health Research (NIHR).

• Grant title: HQLC Dementia Carers Instrument Development: DECIDE (MR/M025179/1).

• Chief Investigator: Dr Penny Wright

• Contact: m.c.horton@leeds.ac.uk
Shameless Plug

- Dates for Leeds Rasch Courses (using RUMM2030)
 - May 2018: Introductory
 - September 2018: Introductory, Intermediate, Advanced (led by Prof. Svend Kreiner and Dr Karl Bang Christensen)
 - November 2018: Introductory

- Google ‘psylab leeds’
- Contact: m.c.horton@leeds.ac.uk